Blog

Blog

Home

Blog

  • The Impact of Earthquakes on Metal Silos
    The Impact of Earthquakes on Metal Silos
    Nov 25, 2024
    Structural and Safety Impacts: Earthquakes can significantly affect the structural integrity and safety of metal silos. The ground shaking can cause welds, connections, or bolts to loosen or break, leading to deformation or rupture of the silo walls. Additionally, the foundation may suffer from uneven settlement due to earthquakes, causing the sand storage silo to tilt or become damaged, increasing the risk of collapse and posing threats to both personnel and property safety.   Functional and Economic Impacts: Earthquakes can also impact the functionality and economic aspects of metal silos. The loading and unloading systems, conveyor equipment, and control systems may be damaged, affecting normal operations and leading to production interruptions. At the same time, compromised sealing can result in material leakage or moisture, affecting the quality of the stored material and the silo's storage capacity. These impacts can lead to supply chain disruptions and increased economic losses for businesses, including costs for repair and reconstruction, as well as potential losses from production halts.   Maintenance and Environmental Impacts: Post-earthquake, metal silos may require more frequent inspections and maintenance to ensure their safety and reliability, increasing maintenance costs. Moreover, the protective layers or coatings on the silo may be damaged, accelerating corrosion and shortening the service life of the silo. Environmentally, material leakage from the silo can pollute the surrounding environment, and damaged silos may no longer meet current safety standards, necessitating structural assessments and upgrades to comply with regulations and standards.
    Read More
  • Fortifying Metal Silos Against Earthquakes
    Fortifying Metal Silos Against Earthquakes
    Mar 09, 2023
    Foundation Isolation and Energy Dissipation: The first step in earthquake-proofing metal silos is to minimize the impact of seismic waves. Foundation Isolation techniques, such as rubber or sliding bearings, act as buffers between the silo and the ground, reducing the transmission of seismic energy. This approach effectively lessens the ground motion effects on the silo. Coupled with this, Energy Dissipation Systems like dampers and absorbers help to dissipate seismic energy, reducing stress on the silo's structure. These systems can be tailored to the specific seismic risks of a silo's location, providing a customized approach to enhancing its earthquake resistance.   Structural Reinforcement and Health Monitoring: Strengthening the powder silo's structure is another essential aspect of earthquake resistance. Structural Reinforcement involves using high-performance materials like high-strength steel or composites to bolster the  powder silo's walls and connections. This not only increases the  powder silo's load-bearing capacity but also its flexibility, allowing it to absorb seismic energy without collapsing. Additionally, Structural Health Monitoring Systems use a network of sensors to continuously assess the  powder silo's condition, enabling proactive maintenance and repair to ensure the  powder silo remains robust against seismic activity.   Vibration Control and Seismic Risk Assessment: To further mitigate earthquake effects, Vibration Control Technologies such as Tuned Mass Dampers (TMDs) and Tuned Liquid Dampers (TLDs) can be employed. These systems counteract vibrations caused by earthquakes, stabilizing the silo tower and preventing resonance that could lead to structural failure. Lastly, a thorough Seismic Risk Assessment is vital. This involves analyzing the geological conditions and structural characteristics of the silo tower to predict potential seismic impacts and design appropriate countermeasures. This proactive approach aids in making informed decisions about the silo's design and construction, ensuring it can withstand the specific seismic challenges of its location.   By integrating these advanced seismic technologies, metal silos can be made more resilient to earthquakes. From foundation isolation to structural reinforcement and vibration control, each measure plays a vital role in enhancing the earthquake resistance of metal silos. As we continue to learn from seismic events and advance our technologies, the goal is to create silos that not only withstand earthquakes but also maintain their functionality, ensuring the safety of people and the continuity of industrial operations.
    Read More
  • Reinforcing Cement Silos: A Comprehensive Guide to Structural Design and Material Upgrades
    Reinforcing Cement Silos: A Comprehensive Guide to Structural Design and Material Upgrades
    Nov 10, 2022
    When it comes to the longevity and stability of metal silos, reinforcement is key. Here we'll explore the essential steps to bolster the resilience of these structures, ensuring they stand strong against the test of time and extreme weather conditions.   Structural Design and Material Upgrades The first step in reinforcing a cement silo is to focus on its structural design. By incorporating additional horizontal, vertical, or diagonal braces, we can significantly enhance the cement silo's lateral stability and resistance to lateral forces. These bracing elements act as the "skeleton" of the cement silo, providing a robust framework that improves its stability during typhoons and other severe weather events. Moreover, thickening the cement silo walls or adding reinforcement bars can boost its resistance to wind pressure and deformation. Upgrading materials to high-strength, corrosion-resistant metals or applying anti-corrosion and anti-rust coatings to the cement silo's surface can also extend its service life and enhance durability.   Connection Hardware and Foundation Reinforcement The connection hardware and fasteners of a concrete silo are crucial for its structural integrity. Replacing these with higher-strength components and increasing the number of fastening points can effectively improve the concrete silo's connection stability. Additionally, the stability of the foundation is paramount to the concrete silo's wind resistance. Expanding the foundation area or reinforcing weak soil can increase the concrete silo's load-bearing capacity and stability. These measures help ensure that the concrete silo remains stable in the face of strong winds, reducing structural damage due to foundation instability.   Wind Protection and Maintenance Monitoring Wind protection measures for metal storage silos include the installation of high-strength wind-resistant windows and doors, as well as the reinforcement of roofs and drainage systems. These features effectively prevent strong winds and rain from entering the storage feeding silo tank, reducing the impact of wind loads on the structure. Installing windbreak walls or baffles can also reduce the direct impact of wind loads on the silo tank. Beyond physical reinforcement, equipping the storage silo tank with a structural health monitoring system and conducting regular inspections and maintenance are vital for ensuring silo safety. By monitoring the storage silo's structural condition in real-time, we can promptly identify and repair structural damage caused by corrosion, aging, and other issues, ensuring the silo's safe and stable operation even in extreme weather conditions.
    Read More
  • Enhancing the Typhoon Resistance of Metal Silos
    Enhancing the Typhoon Resistance of Metal Silos
    Nov 13, 2020
    In regions prone to typhoons, metal silos serve as crucial storage facilities, and their ability to withstand these powerful storms is important. So, how can we bolster the typhoon resistance of metal silos? Here are three key strategies that might shed some light on this matter.   1. Structural Design and Reinforcement First and foremost, the structural design and reinforcement of steel silos are pivotal in enhancing their typhoon resistance. From the outset, it's essential to thoroughly consider the impact of wind loads and opt for structural forms capable of withstanding significant wind forces. Shapes such as cylindrical or conical designs exhibit better stability under wind load conditions. Additionally, it's crucial to strategically place support structures, including horizontal, vertical, or diagonal bracing, which act as the "skeleton" of the metal silo, significantly improving its lateral force resistance.   Of course, utilizing high-strength, corrosion-resistant metal materials is also indispensable. These materials not only possess higher strength and ductility to better resist wind loads but also extend the service life of the metal silo. In critical areas such as connectors and fasteners, it's equally important to use high-quality products to ensure the solidity and safety of the structure.   2. Wind and Rain Protection Measures Beyond structural design and reinforcement, wind and rain protection measures are also vital in enhancing the typhoon resistance of steel silos. For the doors and windows of metal silos, it's imperative to install high-strength, airtight windproof windows and doors. These facilities act as the "goalkeepers" of the metal silo, effectively preventing strong winds and rain from entering the silo interior and reducing the impact of wind loads on the silo structure.   We also need to reinforce the roof and drainage system of the metal silo. The roof should be made of sturdy waterproof materials, such as profiled steel sheets or color-coated steel plates, to enhance its wind resistance and watertight performance. The drainage system should also be well-designed to ensure that rainwater can be promptly drained, preventing damage to the silo structure from water accumulation. For the roof's seams and openings, sealing treatments are also necessary to prevent rainwater from seeping into the silo interior.   3. Comprehensive Measures: Enhancing Typhoon Resistance Across the Board Lastly, we must adopt comprehensive measures to enhance the typhoon resistance of storage silos. For instance, setting up windbreak walls or wind shields around the storage silos or in areas susceptible to wind impact can effectively block the direct impact of strong winds on the silo. Regular inspections and maintenance of metal silos are also essential to identify and address potential safety hazards promptly.   Furthermore, establishing a meteorological monitoring system and devising emergency plans are indispensable. By monitoring meteorological parameters such as wind speed and direction in real-time, we can provide early warnings and take countermeasures. The formulation of emergency plans allows for swift responses during typhoons, ensuring the safety of personnel and materials.
    Read More
  • The Art of Steel Structure Reinforcement: Techniques, Strategies, and Sustainability
    The Art of Steel Structure Reinforcement: Techniques, Strategies, and Sustainability
    Nov 08, 2019
    Steel structures are highly favored for their lightness, high strength, and aesthetic appeal, making them widely used in large-scale architectural steel structures. However, as time passes and the load increases, the stability of steel structures becomes crucial. This article will explore the importance and methods of prefabricated steel structure building reinforcement, helping readers understand this critical civil engineering issue.   The Necessity and Classification of Steel Structure Reinforcement When steel structures face insufficient load-bearing capacity or damage, reinforcement and strengthening are required. Reinforcement work should be carried out after professional inspection, and measures should be taken based on the extent of the damage, either locally or as a whole. There is a variety of reinforcement techniques, including adding supports, changing structural calculation diagrams, adhesive reinforcement, and prestressed reinforcement, among others.   The method of adding supports involves installing additional supports in the middle of beams or slab spans to reduce the span and increase load-bearing capacity, while also limiting deflection. This method is suitable for large-span steel structures but may affect the use of space. Changing the steel structural calculation diagram involves improving steel structural stability and load-bearing capacity through measures such as changing load distribution and adding supports. Adhesive reinforcement of steel structures uses adhesives to bond materials to damaged areas, reducing stress and offering advantages such as not increasing self-weight, fatigue resistance, and corrosion resistance. Adhesive fiber-reinforced plastic reinforcement is suitable for various steel structural components and has characteristics such as resistance to corrosion and moisture, but requires fireproof treatment. Prestressed reinforcement technology for prefabricated steel structure buildings includes direct bonding and overall reinforcement methods, suitable for the reinforcement of components or the entire structure.   Advantages and Challenges of Steel Structure Reinforcement Techniques The selection of steel structure reinforcement techniques must consider economic efficiency, efficiency, and reliability. Prestressed reinforcement technology is favored because it can be carried out without unloading or production shutdown, reducing deformation and eliminating stress beyond the limit. It also reduces the stress of bond interface delamination, improving the reliability of reinforcement and reducing costs.
    Read More
  • New Anti-Corrosion Additives: The Guardian Angels of Metal Silos and Steel Structures
    New Anti-Corrosion Additives: The Guardian Angels of Metal Silos and Steel Structures
    Nov 16, 2024
    In the realm of industry, the issue of metal part corrosion has long been a thorn in our side. Not only does it lead to a decline in equipment performance, but it can also trigger safety incidents and increase maintenance costs. Fortunately, with the advancement of technology, research on new anti-corrosion additives has provided us with solutions. We will explore how these new anti-corrosion additives significantly enhance the rust-proofing performance of metal silos and steel structures.   The Challenge of Rust for Metal Silos and Steel Structures Metal silos and steel structures are widely used in construction and industry due to their strength and durability. However, they also face the serious challenge of corrosion. Corrosion not only affects the integrity of the structure but can also lead to material loss and environmental pollution. Therefore, developing effective anti-corrosion additives is crucial for extending the service life of these structures.   Advances in Research on New Anti-Corrosion Additives The latest research indicates that sulfonate-based anti-corrosion agents with different alkalinity values show significant differences in rust prevention performance. By delving into the mechanisms of sulfonate rust prevention, scientists have been able to design more efficient formulas for anti-corrosion composites. These composites not only provide stronger protection against rust but also adapt to various working environments and requirements.   Impact on Metal Components The impact of new anti-corrosion additives on metal components or metal fabrication parts is remarkable. They can form a protective layer on the metal surface, isolating it from water and oxygen, thus slowing down the corrosion process. Moreover, these additives are also penetrating, capable of reaching into the tiny cracks in the metal surface to remove existing rust and corrosion.   Specific Impact on Metal Silos and Steel Structures For metal silos and steel structures, the application of new anti-corrosion additives can significantly improve their durability and safety. They can form a uniform protective layer on the surface of these structures, reducing the decrease in structural strength and maintenance costs caused by corrosion. In addition, the environmentally friendly nature of these additives means that they do not impose additional burdens on the environment during use.   Research and application of new anti-corrosion additives offer new solutions for the maintenance of metal silos and steel structures. They not only extend the service life of these structures but also enhance their safety and environmental friendliness. As research progresses, we have every reason to believe that these new additives will play an increasingly important role in the field of industrial rust prevention.
    Read More
  • Embracing the Future of Stainless Steel: The Rise of Corrosion-Resistant Wonder Materials
    Embracing the Future of Stainless Steel: The Rise of Corrosion-Resistant Wonder Materials
    Aug 01, 2024
    Today's world stainless steel stands out for its durability and resistance to corrosion, making it a top choice for manufacturing silo bins and metal fabrication parts. However, as technology advances, so do our demands for materials. Today, a new generation of stainless steel that has made a quantum leap in corrosion resistance—enter micro-alloyed Si-enhanced ferritic/martensitic steels and austenitic stainless steels.   The Limitations of Traditional Stainless Steel Traditional stainless steels, such as 9%-12% chromium ferritic/martensitic steels and 316 austenitic stainless steels, have performed admirably in many applications. However, in extreme environments like liquid lead-bismuth eutectic (LBE), their performance can be challenged. LBE is highly corrosive, posing a severe threat to the stability and longevity of containers and components.   The Breakthrough with New Stainless Steel The latest research indicates that by employing micro-alloying techniques, specifically adding a small amount of silicon (Si), we can significantly enhance the stability and mechanical properties of materials in LBE. These new materials include 9Cr-Si and 12Cr-Si ferritic/martensitic steels, as well as ASS-Si austenitic stainless steels.   A Leap in Corrosion Resistance The secret to these new stainless steel materials lies in the formation of silicon-rich oxides in LBE. These oxides not only increase the density of the oxide film but also markedly improve the material's corrosion resistance. At 550°C, whether in static saturated oxygen or dynamic controlled oxygen LBE environments, the dissolution corrosion of these materials is effectively suppressed.   Impact on Stainless Steel Fabrication Services and Stainless Steel Storage Tank What does this mean for stainless steel fabrication services and stainless steel storage tank? Firstly, these new materials offer enhanced protection, significantly extending the service life of stainless steel fabrication services and stainless steel storage tank in highly corrosive environments. Secondly, due to their superior corrosion resistance, these materials are poised to meet the design requirements of advanced nuclear reactors like lead-cooled fast reactors, offering new solutions for nuclear safety and efficiency.   As new materials continue to emerge, the horizons for stainless steel applications expand. Micro-alloyed Si-enhanced ferritic/martensitic steels and austenitic stainless steels, with their exceptional corrosion resistance, are opening a new chapter in the application of stainless steel.
    Read More
  • The Green Guardian of Steel: Erigeron Canadensis Extract
    The Green Guardian of Steel: Erigeron Canadensis Extract
    Nov 15, 2024
    Steel products are ubiquitous in our daily lives, from architectural structures to household appliances, and industrial equipment. They are an essential part of our existence. However, a significant issue with steel products is their susceptibility to corrosion, especially in acidic environments. Corrosion not only affects their appearance but also reduces structural integrity, potentially leading to safety hazards. Therefore, finding effective corrosion inhibitors is crucial for extending the lifespan of steel products for example steel silo, steel skip bin or steel structure. Research has discovered a natural corrosion inhibitor—Erigeron Canadensis extract (ECE)—to see how it becomes the green guardian of steel products.   Erigeron Canadensis L., also known as Canadian daisy fleabane, has extracts rich in flavonoids, alkaloids, and terpenes, making it a potential corrosion inhibitor. The active components in ECE contain a multitude of heteroatoms and unsaturated structures, which enable ECE to form a protective film on the steel surface. In HCl medium, the protonated components of ECE carry a positive charge, while the steel surface, due to the adsorption of Cl-, carries a negative charge. The opposite charges attract each other, allowing ECE to physically adsorb onto the steel surface and form a protective layer. Additionally, the O atoms in ECE coordinate with the empty d orbitals of Fe, forming chemical adsorption that further enhances the stability of the protective film.   Studies have shown that ECE exhibits good corrosion inhibition performance on steel in a 1.0 mol/L HCl medium, with the corrosion inhibition rate increasing as the concentration of ECE increases. At 40°C, the best corrosion inhibition rate is achieved with 300 mg/L of ECE, reaching 93.7%. This means that using Erigeron Canadensis extract can significantly reduce the corrosion rate of steel in acidic environments.   For steel products like steel feeding silos and waste skip bin that are often exposed to harsh environments, the application of ECE can significantly improve their corrosion resistance. By forming a protective film on the surface of these products, ECE not only slows down corrosion but also enhances surface hydrophobicity, thereby reducing contact with water and corrosive media, and extending service life.   As a natural and eco-friendly corrosion inhibitor, Erigeron Canadensis extract not only effectively protects steel products from corrosion but also enhances their hydrophobicity, which is significant for increasing the lifespan and safety of steel products. With the growing emphasis on environmental protection and sustainable development, the application prospects of Erigeron Canadensis extract are broad, and it is expected to become a rising star in the field of steel anti-corrosion.
    Read More
  • Gas-Phase Corrosion Fighters: Unveiling the Future of Metal Protection
    Gas-Phase Corrosion Fighters: Unveiling the Future of Metal Protection
    Nov 16, 2024
    What Are Vapor Phase Inhibitors? Vapor Phase Inhibitors (VPIs) are low molecular weight compounds that volatilize and adsorb onto metal fabrication parts surfaces to form a protective film, preventing contact between the metal and corrosive media. Unlike traditional corrosion protection methods, VPIs don't need direct contact with the metal part surface to protect every nook and cranny, including hard-to-reach areas like inner cavities, pipes, grooves, and gaps. They are particularly suitable for non-coating protection of complex custom metal fabrication products and components.   How Do Vapor Phase Inhibitors Work? VPIs work by volatilizing and adsorbing on the metal surface to form a protective film that isolates the metal from corrosive media. They can physically or chemically adsorb on the metal surface, creating a hydrophobic layer that prevents water molecules and corrosive media from contacting the metal. Depending on the adsorption method and mechanism, VPIs are classified as anodic, cathodic, or mixed types, each inhibiting the corrosion process in different ways.   Environmentally Friendly Characteristics of Vapor Phase Inhibitors With the rise of environmental awareness, the research, development, and application of low toxicity or non-toxic VPIs have accelerated. These new inhibitors not only have minimal environmental impact during extraction, synthesis, and application but also provide effective corrosion protection. For instance, inhibitors extracted from natural plants and marine animals are not only eco-friendly but also highly effective.   Application Prospects of Vapor Phase Inhibitors Due to their efficiency, economy, ease of use, and long-lasting protection, VPIs have been widely applied in various fields such as machinery, military, and chemical industries. As research on new VPIs progresses, more products are expected to become commercialized and applied in practice, especially in the development of general and efficient VPIs, low toxicity and green VPIs, research on VPIs formulation, and the development of new testing techniques that combine thin film conditions to understand the mechanism of VPIs.   Vapor Phase Inhibitors, as an emerging technology in metal corrosion protection, are becoming an important choice in the field with their unique advantages and broad application prospects. With advancements in technology and increasing environmental requirements, research and application of VPIs will continue to deepen, providing more reliable and environmentally friendly protection for metal products.
    Read More
  • The New Revolution in Industrial Cleaning: Cement Silo Cleaning Robot
    The New Revolution in Industrial Cleaning: Cement Silo Cleaning Robot
    Aug 11, 2023
    Amidst the wave of industrial automation, the emergence of new technologies is continuously driving innovation in traditional industries. Today, we introduce a new type of robot—the cement silo cleaning robot—that is revolutionizing the field of silo cleaning for powdered materials like cement and fly ash with its unique functions and efficiency.   One of the core functions of the cement silo cleaning robot is to enhance the efficiency of powder silo cleaning. Traditional manual cleaning methods are time-consuming and labor-intensive, whereas robots can work around the clock, significantly reducing the cleaning cycle. The automated operation of the robot reduces delays caused by human factors, ensuring the continuity and timeliness of cleaning work, thereby improving the efficiency of the entire production process. Besides, robots perform tasks through remote control or preset programs, reducing the need for personnel to enter high-risk areas, lowering operational risks, and ensuring the safety of workers.   While reducing material loss, the cement silo cleaning robot also minimizes dust spillage caused by improper cleaning, which is significant for environmental protection. The reduction of dust not only lightens pollution to the surrounding environment but also decreases the health impact on workers. Additionally, the automated cleaning process reduces labor costs, saving expenses for companies and achieving dual goals of economic benefits and environmental protection.   Modern cement silo cleaning robots are often equipped with sensors and data collection systems that can monitor the condition inside the silos in real-time and gather relevant data. This data can be used to analyze the efficiency of silo usage and material flow, providing a scientific basis for a company's inventory management and production scheduling. With the continuous advancement of technology and the promotion of its applications, these robots are expected to be applied in a wider range of industrial fields, further advancing industrial automation. The development and application of cement silo cleaning robots have driven the development of related technologies, including robotics, sensor technology, and automated control technology. The progress of these technologies not only enhances the performance of cement silo cleaning robots but also provides technical support for other fields of industrial automation.   The cement silo cleaning robot, with its characteristics of high efficiency, safety, and environmental friendliness, is becoming an important trend in the field of industrial cleaning. With the continuous maturation of technology and the deepening of its applications, we have reason to believe that this type of robot will play an increasingly important role in future industrial production.
    Read More
  • Unveiling the Innovative Multi-Chambered Silo: A Revolution in Granular Mechanics Modeling Technology
    Unveiling the Innovative Multi-Chambered Silo: A Revolution in Granular Mechanics Modeling Technology
    Oct 19, 2024
    In the area of modern industry, the efficiency of material storage and handling is very important. Recently, a groundbreaking patent technology—the multi-chambered silo—has emerged, offering a novel solution that enhances the efficiency of material storage and revolutionizes the field of granular mechanics modeling technology.   The design of this new type of feeding silo is quite distinctive, consisting of a cylindrical outer wall and a bottom bin at the base. Most notably, its internal structure is ingeniously designed into multiple independent test chambers, separated by special partitioning components. These partitioning components feature flat-plate structured inner walls that interlock with the inner surface of the outer wall through slots, ensuring structural stability and flexibility.   Each test chamber is equipped with a corresponding first discharge opening, with valves installed at the discharge opening position to precisely control the flow of materials. Additionally, to monitor the material level information in real-time, each chamber is fitted with a level detection unit, allowing operators to accurately grasp the storage status of materials.   The design of this new storage silo building not only improves the efficiency of material storage but also offers the possibility for precise management and control of materials. By separating materials into different chambers, it is possible to conduct individual tests and treatments based on the characteristics of different materials, which is significant for studying the flow properties of materials and optimizing storage solutions.   Furthermore, the pressure testing device of this silo tank, including pressure sensors installed in the test chambers and a controller for data exchange, provides technical support for real-time monitoring and analysis of pressure changes during material storage. This is crucial for preventing and reducing potential safety issues that may arise during material storage.   With the promotion and application of this new multi-chambered silo, we foresee its profound impact across various sectors. Primarily, in construction and industrial production, it will enhance the efficiency and safety of material storage. Secondly, in scientific research, it will provide a more accurate testing platform for granular mechanics studies. Lastly, as technology continues to advance and optimize, this silo is expected to play a greater role in intelligent storage and automated logistics systems, driving technological innovation across the industry.   The advent of this new multi-chambered silo is not just a technological breakthrough but also a new way of thinking about future material storage and handling methods. With its application and popularization, we have every reason to believe that it will bring more convenience and possibilities to industrial production and scientific research.
    Read More
  • Adding Floors to Existing Buildings with Lightweight Steel Structures
    Adding Floors to Existing Buildings with Lightweight Steel Structures
    Nov 12, 2022
    In the ever-evolving urban landscape, the demand for space is continuously on the rise. Adding floors to existing buildings using lightweight steel structures has become a common solution. This construction method not only expands the usable space of existing steel structure buildings but also optimizes functionality without the need to demolish the original building.    Before embarking on the addition of a floor using steel frame structures, the first task is to assess the load-bearing capacity of the existing steel structure building. This step is crucial as it directly affects the feasibility and safety of the additional floor. Professional steel structural engineers calculate whether the existing structure can withstand the load of the new floor. If not, reinforcement of the structure is required before proceeding with the design and construction of the steel framed structures. This step is fundamental in ensuring the safety of subsequent construction and avoiding future structural safety issues.   Once it is confirmed that the existing structure can meet the demands of the additional floor, the next step is to design detailed plans for the lightweight steel structures and begin the fabrication of components. This phase requires precise calculations and design to ensure that the new floor's light steel structures perfectly match the existing structure. After the components are fabricated, they are transported to the construction site, ready for installation.   At the construction site, the first task is to align the site with the drawings to identify the position of the axes and pre-embedded components. This step demands high precision to ensure the accurate installation of the prefabricated steel buildings. Subsequently, protective setups are erected around the site to ensure the safety of construction personnel and the smooth progress of the construction.   The installation of light prefabricated steel structure building is the core phase of the entire floor addition project. This step includes the sequential lifting and installation of columns, beams, purlins, and other components. During the installation, professional equipment and tools are used to ensure that each component is precisely placed in its designated position. The accuracy of this step directly affects the stability and safety of the entire structure.   After the installation of the lightweight steel structures, the next task is paneling, including the installation of roof panels, wall panels, and the processing of the core tube. This step is not only related to the appearance of the building but also affects its functionality and practicality.   Since the construction process may damage the original waterproof layer, waterproofing treatment must be carried out after the paneling is completed. This step is crucial in preventing rainwater leakage and protecting the internal structure of the building from water damage.   The construction of new walls must be carried out in accordance with the existing structure, and then handed over to the decoration team for subsequent decorative work. This step is the ultimate realization of the building's aesthetics and functionality.   Throughout the entire process of adding floors with lightweight steel framed structures, each step requires strict control and precise operation. From the assessment of load-bearing capacity to the final decorative work, every step is vital, not only concerning the safety of the building but also affecting its service life and functionality. With a professional construction team and strict quality control, adding floors with lightweight steel structures can become an effective way to expand urban building space.
    Read More
1 2 3 4 5 6 7 8

A total of8pages

Leave A Message

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Submit

Home

products

whatsApp

contact